
Written Exam at the Department of Economics

Winter 2018–19

Advanced Microeconometrics

Final Exam

— Suggested Answers —

Problem 1

Consider the following random utility model, for a sample of N individuals:

yi = arg max
j∈{0,1}

{uij}, i = 1, . . . , N, (1)

uij = x′iβj + εij, for j = 0, 1, (2)

where the explanatory variables contained in the K × 1 vector xi influence

each level of utility through the K × 1 vector of regression coefficients βj, for

j = 0, 1.

The error terms are assumed to be independent and identically distributed

across observations, with a joint normal distribution:(
εi0

εi1

)
iid∼ N

([
0

0

]
,

[
σ2
0 σ01

σ01 σ2
1

])
. (3)

Question 1.1: Show that the probability of choosing alternative 1, for each

individual i = 1, . . . , N , is equal to

Pr(yi = 1 | xi, θ) = Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)
, (4)
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where θ = (β′0, β
′
1, σ

2
0, σ

2
1, σ01)

′, and Φ(·) denotes the cumulative distribu-

tion function (CDF) of the standard normal distribution.

Suggested answer

Alternative 1 will be chosen if the corresponding utility ui1 is larger than

the utility associated with the other alternative ui0:

Pr(yi = 1 | xi, θ) = Pr(ui1 > ui0 | xi) ,

= Pr(x′iβ1 + εi1 > x′iβ0 + εi0 | xi, θ) ,

= Pr(εi0 − εi1 < x′i(β1 − β0) | xi, θ) ,

= Pr

(
εi0 − εi1√

σ2
0 + σ2

1 − 2σ01
<

x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01
| xi, θ

)
,

= Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)
.

Given the joint normality of the error terms assumed in Eq. (3), the

difference of these two random variables follows a normal distribution,

εi0 − εi1 ∼ N (0, σ2
0 + σ2

1 − 2σ01). Therefore, rescaling this difference by√
σ2
0 + σ2

1 − 2σ01 provides a random variable following the standard nor-

mal distribution. The last line is then obtained from the fact that if

Z ∼ N (0, 1), then Pr(Z < z) = Φ(z).

Question 1.2: Using Eq. (4), derive the corresponding log-likelihood function

of the model for the whole sample of N individuals.

Suggested answer

The likelihood function is derived using the expression of the density func-

tion, which is equal, for an individual i, to

f(yi | xi, θ) =
1∏

j=0

Pr(yi = j | xi, θ)1{yi=j} .

This density is derived by considering all possible values taken by yi, using

the probability in Eq. (4).

Given the independence of the error terms assumed across individuals, the

likelihood function is equal to the product of the individual contributions
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to the likelihood:

LN(θ; y, x) =
N∏
i=1

1∏
j=0

Pr(yi = j | xi, θ)1{yi=j} ,

=
N∏
i=1

[
1− Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)]1{yi=0}

×

[
Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)]1{yi=1}

,

for the vector of parameters θ = (β′0, β
′
1, σ

2
0, σ

2
1, σ01)

′, where 1{·} is the in-

dicator function that is equal to 1 if the corresponding condition is fulfilled,

to 0 otherwise.

The corresponding log-likelihood function requested in the question is ob-

tained as

LN(θ; y, x) = lnLN(θ; y, x),

=
N∑
i=1

{
1{yi = 0} ln

[
1− Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)]

+ 1{yi = 1} ln Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)}
.

Question 1.3: Discuss the identification of the model. In particular, explain

precisely which parameter(s) can be identified, and which restrictions, if

any, are required to achieve identification.

Suggested answer

The model parameters θ only enter the (log-)likelihood function derived

previously through the probability in Eq. (4). Therefore, identification

can be achieved by ensuring that it is not possible to change the values

of any of the parameters without affecting this probability—i.e., without

changing the corresponding (log-)likelihood.

Several problems may affect identification in this model. First, it appears

for any K × 1 real vector c, it is possible to define β̃0 = β0 + c and

β̃1 = β1 + c, without changing the probability in Eq. (4), since it depends
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on β1 − β0 = β̃1 − β̃0. Therefore, only γ ≡ β1 − β0 can be identified in

this model. One possible solution is to fix β0 = 0. Second, it is possible to

rescale the latent utilities without affecting the likelihood (setting β0 = 0

does not solve this problem). This can be seen, for example, by multiplying

the covariance matrix of the error terms defined in Eq. (3) by a constant

d2 (i.e., multiply each element of this covariance matrix by d2), and at the

same time multiply the vector of (normalized) regression coefficients γ by

d, for any d > 0. This transformation does not change the probability in

Eq. (4):

Pr(yi = 1 | xi) = Φ

(
x′i(dγ)√

d2σ2
0 + d2σ2

1 − 2d2σ01

)
= Φ

(
x′iγ√

σ2
0 + σ2

1 − 2σ01

)
.

The only way to solve this problem is to fix the variance of the difference of

the error terms, V[εi0 − εi1] = σ2
0 + σ2

1 − 2σ01, to a constant. This requires

to fix these three parameters.

Question 1.4: Using the identification strategy discussed in Question 1.3,

show that this random utility model with two alternatives can be ex-

pressed as a standard probit model. State the corresponding probit

model as part of your answer.

Suggested answer

Following up on the previous discussion about identification, it appears

that this multinomial probit model with only two alternatives boils down

to a standard probit model when β0 = 0 and the covariance matrix of the

error terms is fixed, for example to 0.5×I2, where I2 is the identity matrix

of dimension 2, to obtain V[εi0 − εi1] = σ2
0 + σ2

1 − 2σ01 = 1 (note that σ2
0,

σ2
1 and σ01 could be fixed to different values to produce a unit variance of

the difference of the error terms).

The corresponding probit model can be expressed as follows, where the
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parameters are mapped explicitly to the original model in Eq. (1):

yi = 1{y?i > 0} , i = 1, . . . , N,

y?i ≡ ui1 − ui0 = x′iγ + ui,

γ ≡ β1 − β0,

ui ≡ εi1 − εi0
iid∼ N (0, 1) .

Problem 2

Consider the following linear regression model with two scalar regressors x1

and x2, for i = 1, . . . , N :

yi = x1iβ1 + x2iβ2 + εi, εi
iid∼ N

(
0, τ−1

)
, (5)

where the precision parameter τ = 1/σ2 is the inverse of the variance of the

error term. The observations are collected in the vectors y = (y1, . . . , yN)′,

x1 = (x11, . . . , x1N)′ and x2 = (x21, . . . , x2N)′.

The parameters of the model θ = (β1, β2, τ)′ are assumed to be a priori inde-

pendent, such that p(θ) = p(β1, β2, τ) = p(β1)p(β2)p(τ). An improper prior

is assumed on the regression coefficients, and a Gamma distribution on the

precision parameter:

p(β1) ∝ 1, p(β2) ∝ 1, τ ∼ G(a0, b0) , (6)

with a0 > 0 and b0 > 0, where the probability density function of the Gamma

distribution is

p(τ | a0, b0) =
1

Γ(a0)b
a0
0

τa0−1 exp

{
− τ
b0

}
, (7)

with Γ(·) denoting the Gamma function.

Question 2.1: Without deriving any conditional distributions, outline the

steps of a Gibbs sampler that can be implemented to draw the three

parameters of the model iteratively (i.e., in three different steps).

Page 5 of 12



Be as precise as possible in the description of the sampler.

Suggested answer

Initialize the sampler by assigning starting values to the parameters β
(0)
2

and τ (0) (note that β1 will be updated first, hence no starting value required

for this parameter). Starting values can be fixed (user-defined) or random

(e.g., from the prior), or specified using OLS estimates.

For each MCMC iteration t = 1, . . . , T , cycle through the following steps:

(1) Sample β
(t)
1 from p(β1 | y, x1, x2, β(t−1)

2 , τ (t−1)).

(2) Sample β
(t)
2 from p(β2 | y, x1, x2, β(t)

1 , τ (t−1)).

(3) Sample τ (t) from p(τ | y, x1, x2, β(t)
1 , β

(t)
2 ).

The total number of MCMC iterations T should be chosen such that prac-

tical convegence to the stationary distribution is achieved. The first T0

iterations, when the sampler has not yet reached stationarity, should be

discarded (burn-in period).

Question 2.2: Derive the conditional distribution p(τ | y, x1, x2, β1, β2).

Explain the concept of natural conjugacy, and explain why the Gamma

distribution assumed on τ is (or is not) a natural conjugate prior in this

model.

Suggested answer

This conditional distribution is derived by applying Bayes’ theorem:

p(τ | y, x1, x2, β1, β2) ∝ p(y | x1, x2, β1, β2, τ)p(τ).

The likelihood function is obtained from the standard linear regression

model, where the precision parameter τ = 1/σ2 is used instead of the

variance σ2. The kernel of this likelihood function, with respect to τ , is
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derived as:

p(y | x1, x2, β1, β2, τ) =
N∏
i=1

(2π)−1/2τ 1/2 exp
{
−τ

2
(yi − x1iβ1 − x2iβ2)2

}
,

= (2π)−N/2τN/2 exp

{
−τ

2

N∑
i=1

(yi − x1iβ1 − x2iβ2)2
}
,

∝ τN/2 exp

{
−τ

2

N∑
i=1

(yi − x1iβ1 − x2iβ2)2
}
.

The kernel of the prior is obtained from Eq. (7):

p(τ) ∝ τa0−1 exp

{
− τ
b0

}
.

Combining the kernels of the likelihood and of the prior provides:

p(τ | y, x1, x2, β1, β2)

∝ τN/2 exp

{
−τ

2

N∑
i=1

(yi − x1iβ1 − x2iβ2)2
}
τa0−1 exp

{
− τ
b0

}
,

∝ τa0+N/2−1 exp

{
−τ

(
1

b0
+

1

2

N∑
i=1

(yi − x1iβ1 − x2iβ2)2
)}

,

which appears to be the kernel of the following Gamma distribution:

τ | y, x1, x2, β1, β2 ∼ G

a0 +
N

2
,

[
1

b0
+

1

2

N∑
i=1

(yi − x1iβ1 − x2iβ2)2
]−1 .

A prior distribution is said to be a natural conjugate if the resulting pos-

terior distribution belongs to the same family of distribution. Since we

assumed a Gamma prior distribution on τ and obtained a Gamma distri-

bution for its conditional distribution, we can conclude that the Gamma

distribution is a natural conjugate prior for τ in this model.

Three different data sets with N = 100 observations and different levels of

correlation between the two regressors, ρ ≡ corr(x1, x2) ∈ {0.5, 0.9, 0.99}, are

generated from the model specified in Eq. (5).
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The three-step Gibbs sampler outlined in Question 2.1 is run for 1,000 iter-

ations on each of these three data sets, with the same prior specification in

the three cases. The trace plots and autocorrelograms of the parameter β1 are

displayed in Fig. 2.1 for the three cases.

Question 2.3: Match each of the three cases shown in Fig. 2.1 to the three

data sets (i.e., the three different values of ρ). Explain intuitively the

differences observed between these three MCMC outputs.

Suggested answer

The three MCMC outputs show different levels of autocorrelations, which

imply different speeds of convergence as well as different levels of mixing

for the three Markov chains. This is due to the correlation ρ between the

two regressors x1 and x2 used in the data generating process. The Gibbs

sampler is implemented in three steps, where each regression coefficient is

updated conditionally on the other one (e.g., β1 given β2, and β2 given β1).

As a consequence, the higher the correlation between the two regressors,

the higher the autocorrelation of the Markov chain, as the sampler becomes

more “sticky” and slower in exploring the whole parameter space because

of this correlation. Therefore, we can deduce that case 1 corresponds to

ρ = 0.99 (largest autocorrelations), case 2 to ρ = 0.9 and case 3 to ρ = 0.5

(smallest autocorrelations).

Question 2.4: Explain precisely if and how you can use the random draws

of β1 shown in Fig. 2.1 to draw posterior inference about this parameter

in each of the three cases.

If these draws cannot be used, what would you have to change in the

implementation of the Gibbs sampler to be able to do posterior inference

on the parameters?

Suggested answer

To be able to use the random draws of these Markov chains for posterior

inference, the first iterations should be discarded as burn-in period to make

sure the results do not depend on the initialization of the model (starting

values). For cases 2 and 3, a small burn-in period of 20 iterations would

be enough, as convergence is very fast. For case 1, convergence is much
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slower, and a larger number of iterations should be discarded (at least

200).

In all three cases, the number of random draws (after burn-in) might be

too small to allow precise posterior inference. This is because Monte Carlo

integration relies on a law of large numbers, therefore the larger the number

of random draws, the better the approximation. This might be especially

problematic is cases 1 and 2, where autocorrelations are large, and more

draws would be required for the posterior sample to be representative of

the target distribution.

One solution would be to increase the number of MCMC iterations, in or-

der to decrease Monte Carlo error. Another alternative would be to modify

the Gibbs sampler. For instance, instead of sampling β1 and β2 sequen-

tially, it is possible to sample them jointly from p(β1, β2 | y, x1, x2, τ). This

joint sampling would reduce the autocorrelation a lot, thereby improving

mixing.

[Note: You do not need any additional information about the data generating

process, about the prior specification or about the configuration of the Gibbs

sampler to answer the last two questions.]
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Figure 2.1: Trace plots and autocorrelograms of the parameter β1 for the
three different cases.
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Problem 3

Consider the following MATLAB function:

1 function [y,X,theta] = gen data(N,J,K)

2 theta = 2*rand(K,J-1)-1;

3 X = [ones(N,1), sqrt(2).*randn(N,K-1)];

4 V = [zeros(N,1), X*theta];

5 E = gevinv(rand(N,J));

6 U = V + E;

7 [maxU,y] = max(U,[],2);

8 end

Question 3.1: Express in mathematical terms what this function does. You

should just provide a few equations to answer this question. Be explicit

about the notation.

[Note: The MATLAB function gevinv() computes the inverse of the CDF

of the standard Gumbel distribution (type 1 extreme value distribution).]

Suggested answer

One possible solution (note that alternative representations are possible),

for a sample of N individuals, J alternatives and K regressors:

yi = arg max
j∈{1,...,J}

{uij}, for i = 1, . . . , N,

uij = x′iθj + eij, for j = 1, . . . , J,

eij ∼ Gumbel(0, 1),

xi = (1, xi2, . . . , xiK)′,

xik ∼ N (0, 2) , for k = 1, . . . , K,

θj = (θj1, . . . , θjK),

θ1k = 0, for k = 1, . . . , K,

θjk ∼ U(−1, 1) , for j = 2, . . . , J.

Question 3.2: Describe briefly the econometric model that can be used to
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fit the corresponding data, as well as an estimation method that can be

implemented to estimate the unknown parameters θ.

Suggested answer

The data generated by this MATLAB function correspond to a multinomial

logit model: The error terms of the model follow the standard Gumbel

distribution, and the regressors are fixed across alternatives for all indi-

viduals, with corresponding regression coefficients that vary across alter-

natives. This model has N observations, J different alternatives, and K

regressors (where the first one is an intercept term).

The multinomial logit model can be estimated with maximum likelihood

estimation.
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